

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado.

Bachillerato L. O. E.

Materia: MATEMÁTICAS II

Instrucciones: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios deben redactarse con claridad, detalladamente y razonando las respuestas. Puedes utilizar cualquier tipo de calculadora. Cada ejercicio completo puntúa 2,5 puntos.

PROPUESTA A

- **1A.** Se quiere construir un depósito de chapa abierto superiormente con forma de prisma recto de base cuadrada, de $1000m^3$ de capacidad, lo más económico posible. Sabiendo que:
 - El coste de la chapa usada para los laterales es de 100 euros el metro cuadrado
 - El coste de la chapa usada para la base es de 200 euros el metro cuadrado

¿Qué dimensiones debe tener el depósito? ¿Cuál es el precio de dicho depósito? (2,5 puntos)

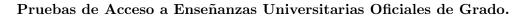
2A. Dada la función

$$g(x) = (x+b)\cos x, \qquad b \in \mathbb{R}.$$

- a) Calcula la primitiva G(x) de g(x) que verifica que G(0) = 1. (1,25 puntos)
- b) Calcula el valor de $b \in \mathbb{R}$ sabiendo que

$$\lim_{x \to 0} \frac{G(x) - g'(x)}{x} = -2.$$
 (1,25 puntos)

3A. Dadas las matrices


$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 2 & -3 \end{pmatrix} \quad \text{y} \quad D = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

- a) ¿Qué dimensión debe tener una matriz X para poder efectuar el producto matricial $A \cdot X \cdot B$? (0,5 puntos)
- b) Despeja X en la ecuación matricial $A \cdot X \cdot B + C = D$. (1 punto)
- c) Calcula la matriz X. (1 punto)
- 4A. Dadas las rectas

$$r \equiv 2 - x = y - 2 = \frac{z}{3}$$
 y $s \equiv \begin{cases} x = -1 + 2\lambda \\ y = -1 + \lambda \\ z = c - 3\lambda \end{cases}$ $\lambda \in \mathbb{R}$

donde $c \in \mathbb{R}$, se pide:

- a) Estudiar la posición relativa de r y s en función del parámetro $c \in \mathbb{R}$. (1,5 puntos)
- b) Hallar el punto de intersección de r y s cuando dichas rectas sean secantes. (1 punto)

Bachillerato L. O. E.

Materia: MATEMÁTICAS II

PROPUESTA B

1B. Dada la función

$$f(x) = 2xe^{1-x}$$

se pide:

- a) Estudiar si tiene asíntotas horizontales (1.25 puntos)
- b) Calcular sus puntos de inflexión. (1,25 puntos)
- **2B.** Dadas las funciones $f(x) = \frac{2}{x}$ y g(x) = 3 x, se pide:
- a) Esbozar la región encerrada entre las gráficas de f(x) y g(x). (0,5 puntos)
- b) Calcular el área de la región anterior. (2 puntos)
- **3B.** a) Enuncia el Teorema de Rouché-Fröbenius. (0,5 puntos)
- b) Razona que un sistema de tres ecuaciones lineales con cuatro incógnitas no puede ser compatible determinado. (0,5 puntos)
- c) Determina para qué valores del parámetro $a \in \mathbb{R}$ el sistema

$$\begin{cases} 2x + 3y - z + 2t = 2 \\ 5x + y + 2z = 1 \\ x + 8y - 5z + 6t = a \end{cases}$$

es incompatible. (1,5 puntos)

4B. Dados los planos

$$\pi \equiv 2x - 3y + z = 0 \qquad \text{y} \qquad \pi' \equiv \left\{ \begin{array}{l} x = 1 + \lambda + \mu \\ y = \lambda - \mu \\ z = 2 + 2\lambda + \mu \end{array} \right. \quad \lambda, \mu \in \mathbb{R}$$

y el punto P(2, -3, 0), se pide:

- a) Hallar la ecuación continua de la recta r que pasa por P y es paralela a la recta s determinada por la intersección de π y π' . (1,5 puntos)
- b) Calcular el ángulo entre los planos π y π' . (1 punto)