

Evaluación para el Acceso a la Universidad Curso 2021/2022–Convocatoria Ordinaria

Materia: BIOLOGÍA

Criterios de corrección

En color negro: Con esta información la pregunta se considera completa.

En color azul: información adicional.

EN LOS EXÁMENES CON MÁS DE TRES FALTAS DE ORTOGRAFÍA: PENALIZACIÓN DE 0.25 PUNTOS.

BLOQUE 1. TEST. 15 + 2 DE RESERVA; DE LAS 15 PRIMERAS, SE DEBEN CONTESTAR UN MÁXIMO DE 10. Las preguntas 16 y 17 son de reserva.

PUNTUACIÓN: 0.25 por pregunta (cada 4 mal restan una bien).

1.	a	10. c
2.	b	11. b
3.	b	12. c
4.	d	13. c
5.	b	14. b
6.	С	15. d
7.	a	RESERVA
8.	С	16. d
9.	b	17. c

BLOQUE 2. CONTESTAR, <u>COMO MÁXIMO TRES DE LAS CUATRO</u> CUESTIONES CORTAS. TOTAL 4.5 PUNTOS (3 x 1.5 cada cuestión; 0.5 cada apartado)

PUNTUACIONES DE CADA APARTADO: 0.5=COMPLETO; 0.25=INCOMPLETO; 0= MAL CONTESTADO.

CUESTIÓN 2.1.

- a. VIRUS BACTERIOFAGO ¿QUÉ ES Y UNA DIFERENCIA CON RETROVIRUS?
- (0.25) Virus que infecta exclusivamente a bacterias. También llamados fagos.

Normalmente son virus complejos y la mayoría son virus desnudos. Formados por cabeza icosaédrica con ADN de doble cadena y cola helicoidal cilíndrica, collar y placa basal, espículas y fibras.

(0.25) Diferencia con retrovirus: Los retrovirus poseen ARN como material genético y la enzima transcriptasa inversa que permite retrotranscribir este ARN.

A partir del ADN bicatenario obtenido mediante retrotranscripción, utilizando la maquinaria celular, el retrovirus sintetizará ARN mensajero.

b. CICLO LÍTICO: QUÉ ES. (0.25) respuesta parcial y (0.5) respuesta completa

Ciclo de replicación en el que la misma célula infectada es lisada para liberar a los "virus hijos".

<u>Alternativa:</u> Es un ciclo de replicación del ácido nucleico viral que utiliza la maquinaria metabólica de la célula infectada, la cual se lisa o rompe para liberar los nuevos viriones tras completar el ciclo lítico.

c. ANTICUERPOS: QUÉ SON Y CÉLULAS PRODUCTORAS.

(0.25) Son glucoproteínas globulares capaces de reconocer antígenos específicos. También se denominan inmunoglobulinas. Presentes en el plasma y en la membrana de los linfocitos B.

***Será correcta una respuesta escueta y también más amplia. No se pide estructura del anticuerpo ni dibujo. Si el/la alumno/a lo incluye, se valorará.

(0.25) Son producidos por los <u>linfocitos B</u>. Los linfocitos B al activarse se convierten en células plasmáticas que producen y secretan los anticuerpos.

CUESTIÓN 2.2.

a. CELULOSA Y ALMIDÓN: Molécula que los forma. Grupo bioquímico. Describir UNA función de cada una.

**(0.25) POR CADA 2 BIEN.

Molécula: la glucosa

- Grupo bioquímico: **glúcidos o hidratos de carbono.** * el alumno puede ser más específico y también se valorará como correcta (ejem: polisacáridos).
- Función de la celulosa: estructural, de sostén, en pared de células vegetales, etc. * SOLO UNA de estas funciones
- Función del almidón: reserva de energía, principalmente en vegetales. **SOLO UNA de estas funciones.

b. ENLACES ENTRE GLUCOSAS: NOMBRAR Y DESCRIBIR

(0.25) Enlaces o-glucosídicos.

(0.25) Son el resultado de la <u>unión de monosacáridos</u> al interaccionar <u>dos grupos hidroxilo</u> (-OH) de dos moléculas distintas. Los anómeros del almidón son alfa y los de la celulosa son beta.

c. DOS FUNCIONES DEL AGUA EN LOS SERES VIVOS.

** (0.25) cada función explicada o dos funciones solo nombradas.

Función	Explicación	
Disolvente	El agua es el medio en que se realizan casi todas las reacciones biológicas. Otra: Es un buen disolvente de los compuestos iónicos, como las sales minerales y de los compuestos covalentes polares, como muchos glúcidos y muchas proteínas.	
Reactivo	El agua interviene en numerosas reacciones químicas: hidrólisis. En la fotosíntesis es fuente de hidrógenos.	
Transportador	Medio de transporte de muchas sustancias	
Estructural	Las células (sin pared rígida) mantiene su volumen y forma (turgencia) gracias a la presión que ejerce el agua interna. Si se pierde agua: plasmólisis	
Amortiguador mecánico	Ejemplo: líquido sinovial en las articulaciones de vertebrados, evitando rozamiento entre huesos.	
Termorregulador	Elevado calor específico y elevado calor de vaporización. Ejemplo: al sudar se pierde agua que al evaporarse toma calor del cuerpo, que se enfría.	

Otras funciones: Vehículo de transporte y lubricante en estructuras en movimiento (por su estado líquido a Tª ambiente); Actúa como esqueleto hidrostático (porque es un líquido prácticamente incompresible); Fundamental para ascenso de la savia en vegetales (por su capilaridad asciende a lo largo de conductos estrechos), Participe movimientos citoplasmáticos por su elevada tensión superficial.

2

CUESTIÓN 2.3.

a. MUTACIÓN: DEFINIR.

(0.25) respuesta parcial y (0.5) respuesta completa

Una mutación es una **alteración en el material genético** inducida por diversas causas: espontáneas, errores en la replicación o por <u>agentes mutagénicos</u> (ejem: factores físicos, químicos o biológicos que aumentan la frecuencia de estas alteraciones).

b. TIPOS DE MUTACIONES: DESCRIBIR DOS Y DAR DOS EJEMPLOS

Total: 4 repuestas (descripciones y ejemplos) ***0,25 por cada DOS bien.

El/la alumno/a puede explicar y ejemplificar DOS tipos de mutaciones según la cantidad de material genético afectado:

	GÉNICAS Alteraciones de un solo gen	SUSTITUCIÓN DE BASES	Púrica por púrica (transición) Púrica por pirimidínica
			(transversión)
		PÉRDIDA DE BASES	
		INSERCIÓN DE BASES	
Según la		TRANSPOSICIÓN DE B	
cantidad de	ico CROMOSÓMICAS Alteraciones de la estructura	EN ORDEN DE GENES	Inversiónn
material			Traslocación
genético afectado		EN NÚMERO DE GENES	Delecciones
arectado			Duplicaciones
		EUPLOIDÍAS	Monoploidías
	GENÓMICAS Alteraciones en el número de cromosomas	(afectan al número de	(no haploidía)
		juegos cromosómicos)	Poliploidías
		ANEUPLOIDÍAS	"Somías"
		(falta o sobra algún	(monosomías,
		cromosoma)	trisomías)

También válidos ejemplos específicos como: síndrome de Down como trisomía, etc...

También válidas si se describen y ejemplifican dos tipos de mutaciones según otras características:

	SOMÁTICAS		DOMINANTES
Según el tipo	En células no reproductoras.	Según la	Se manifiestan con un
de célula al	No se transmiten a la descendencia	relación de	solo alelo mutado
que afecte	GERMINALES	dominancia	RECESIVAS
	En gametos.		Se manifiestan con los
	Se transmiten a la descendencia		dos alelos mutados
	NEUTRAS		
Común au	No influyen en la evolución		
Según su efecto en la	PERJUDICIALES		
evolución	Disminuyen la eficacia biológica		
evolucion	BENEFICIOSAS		
	Aumentan la eficacia biológica		

c. CÓDIGO GENÉTICO: ¿Qué es y cómo se relaciona con el proceso de traducción?

(0.25) Correspondencia entre los tripletes de nucleótidos del ARNm y los aminoácidos que forman las proteínas.

<u>Otra alternativa</u>: Relación que existe entre la secuencia de nucleótidos (o más concretamente, de bases nitrogenadas presentes en ellos) del ARNm y la secuencia de aminoácidos que constituye una proteína

(0.25) Se relaciona porque: traducción: síntesis de la secuencia de aminoácidos de una proteína siguiendo la secuencia de nucleótidos (tripletes) del ARNm.

ARN de transferencia: transporta los aminoácidos desde el citosol a los ribosomas según la secuencia de bases del ARNm que se va a traducir.

CUESTIÓN 2.4.

a. TRANSCRIPCIÓN: QUÉ ES Y PRINCIPAL ENZIMA IMPLICADA

(0.25) Transcripción: paso de una secuencia de ADN a una secuencia de nucleótidos complementarios correspondientes a un ARNm.

(0.25) ARN-polimerasa

b. DIFERENCIA ENTRE EXONES E INTRONES

**0.5 por explicar diferencia, o también 0.25 por explicar exón, y 0.25 por intrón

EXÓN: Secuencias de **ADN codificantes**, y que permanecen en el transcrito primario (pre-ARN mensajero), tras la eliminación de los intrones y que **formarán el ARN mensajero maduro**.

INTRÓN: Secuencia **no codificante de ADN** que debe ser **eliminada del transcrito primario** (pre-ARNmensaiero) en la maduración de este.

c. INHIBICIÓN COMPETITIVA Y NO COMPETITIVA: DIFERENCIA.

**0.5 por explicar diferencia, o 0.25 por cada inhibición bien explicada.

COMPETITIVA: El inhibidor se **une al centro activo** de la enzima impidiendo la unión del sustrato **("compite con el sustrato** por la unión al centro activo").

NO COMPETITIVA: el inhibidor se une en una zona de la enzima distinta al centro activo, no "compite" con el sustrato.

Los inhibidores enzimáticos disminuyen la actividad de una enzima o impiden completamente su actuación.

BLOQUE 3. CONTESTAR SOLO UNA DE LAS DOS CUESTIONES SOBRE IMÁGENES. TOTAL 2 PUNTOS.

PUNTOS DE CADA APARTADO: 0.5 = COMPLETO; 0.25 = INCOMPLETO; 0 = MAL CONTESTADO.

CUESTIÓN 3.1.

a. **(0.25) POR CADA DOS BIEN:

- Macromolécula: ADN BICATENARIO Ó DOBLE HÉLICE DE ADN
- Modelo estructura tridimensional: DOBLE HÉLICE o MODELO DE WATSON Y CRICK
- Características del modelo: *** HAY QUE <u>DESCRIBIR SOLO DOS</u> de las siguientes:
 - ✓ Carácter ácido por ionización de las pentosas y grupos fosfato.
 - ✓ Constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud.
 - ✓ Cadenas antiparalelas: el extremo 3′ de una de ellas se enfrenta con el extremo 5′ de la otra.
 - ✓ La unión entre cadenas se realiza por medio de enlaces de hidrógeno entre las bases nitrogenadas.

- Cadenas complementarias: (y no iguales) ya que una de ellas tiene la secuencia de bases complementaria a la otra.
- ✓ Las dos cadenas están **enrolladas en espiral** formando una doble hélice alrededor de un eje
- El enrollamiento es dextrógiro y plectonímico.
- ✓ **Se puede desnaturalizar** separación de las cadenas a altas temperaturas.
- ✓ Se puede renaturalizar a bajas temperaturas. NOTA: Se podría describir otra característica que sea válida y no esté recogida en este listado.
- b. (0.25) *** Indicar SOLO DOS componentes de estructura B: Nucleosoma

Proteínas, histonas, doble hélice de ADN, ADN espaciador o internucleosomal, Histona H, complejo octamérico u octámero d e histonas, complejo nucleosomal, etc.

(0.25) Estructura C: Cromatina ó "collar de perlas o cuentas" formada por unidades básicas denominadas nucleosomas ("las perlas o cuentas") y se encuentra en la INTERFASE del ciclo celular de todas las células eucariotas. También valido si se indica fibra de cromatina de 30nm.

Se denomina también fibra elemental de cromatina, o fibra de cromatina de 100 Amstrongs, o filamento nucleosómico o nucleofilamento.

- c. (0.25) La estructura D es un cromosoma metafásico formado por dos cromátidas.
 - (0.25) Finalidad: La macromolécula A (doble hélice de ADN) formará la estructura D (cromosoma metafásico) para la separación de las cromátidas hermanas en la división celular.
- **d.** (0.25) por explicación de la fase y (0.25) por explicación importancia.

Es la anafase I de la meiosis porque:

Los dos cromosomas homólogos se separan y migran hacia los polos opuestos pero las dos cromátidas hermanas NO se separan sino que migran juntas hacia el mismo polo.

Importancia: Además es la meiosis porque ha habido intercambio de material genético entre cromosomas homólogos: recombinación génica que es fundamental para incrementar la variabilidad genética.

CUESTIÓN 3.2.

- a. (0.25) Esquema A: célula eucariota porque presenta núcleo rodeado de membrana o envoltura nuclear en cuyo interior estará el material genético. Posee además sistemas endomembranosos además de mitocondrias.
 - (0.25) célula animal porque no tiene cloroplastos, tiene núcleo en la región central, no tiene pared celular gruesa y rígida, no contiene una gran vacuola que ocupe gran parte del citoplasma, no tiene forma poligonal, etc.
- *** NOTA: OTRA alternativa SOLO válida en caso de un razonamiento claro: como no se ven los centriolos, el/la alumno/a puede razonar que las estructuras "verdes" del citosol son cloroplastos y podría ser una célula vegetal (aunque NO tiene una gran vacuola, no tiene núcleo en posición lateral, v NO tiene PARED CELULAR gruesa v rígida).
- b. 0.25 por cada dos orgánulos o funciones correcto/as.

Orgánulo 1: Retículo endoplasmático (RE) Funciones: **SOLO una.RE rugoso. Síntesis de proteínas, fosfolípidos, glucoproteínas o lipoproteínas.RE liso. Síntesis de lípidos ó almacén de lípidos, ó procesos de desintoxicación ó contracción

Orgánulo 2: Mitocondria

Función principal: obtención de energía.

Realizar el metabolismo respiratorio aerobio para obtener la energía necesaria para las funciones celulares. Ciclo de

c. (0.25) Esquema B: glucolisis: proceso catabólico en el que se obtiene energía en forma de ATP.

Es anaerobio: no requiere presencia de oxígeno para su desarrollo. Ocurre en el citoplasma de la célula y se obtiene ATP por fosforilación a nivel de sustrato Productos: ácido pirúvico, ATP, NADH.

- (0.25) número 3: ATP se obtienen 2 por cada molécula de glucosa.
- d. (0.25) número 4: Acetil-Coenzima A letra B: Ciclo de Krebs o del ácido cítrico o de los ácidos tricarboxílicos.
 - (0.25) que siga por el camino b o c depende de la disponibilidad de O₂ (sin oxígeno: camino c).

Disponibilidad para "reciclar" el NADH para recuperar el NAD: cediendo los electrones al oxígeno (vía mitocondrial) o a un aceptor orgánico (piruvato, vía citoplásmica anaerobia)

BLOQUE 4. CONTESTAR SOLO UNO DE LAS DOS PROBLEMAS DE GENÉTICA.

TOTAL 1 PUNTO.

PUNTUACIONES DE CADA APARTADO: 0.5 = COMPLETO: 0.25 = INCOMPLETO: 0 = MAL CONTESTADO

PROBLEMA 4.1.

a. SE PIDEN GENOTIPOS PARENTALES** (0.25) Y GENOTIPOS DE LA F1** (0.25)

**0.25 por cada una bien o repuestas parciales de ambas

Genotipos parentales: *Macho inicialmente: M-H-*

Como descendientes son mm y hh

Macho debe ser doble heterocigoto MmHh

Hembra blanca y con alas normales x Macho negro y con alas hipertrofiadas

mmhh MmHh

F1:

	mh	Fenotipos no se piden
MH	Mm Hh	¼ negros gigantes
Mh	Mm hh	¼ negros normales
mH	mm Hh	¼ blancos gigantes
mh	mm hh	¼ blancos normales

b. SE PIDE PROPORCIÓN INDIVIDUOS BLANCOS EN NUEVO CRUCE.

**0.25 por PROPORCIÓN Y 0.25 POR REALIZACIÓN CRUCE CORRECTO

Hembras negras y con alas normales x Machos negros y con alas gigantes

MmHh Mmhh

	Mh	mh	
МН	MM Hh	Mm Hh	
Mh	MM hh	Mm hh	
mΗ	Mm Hh	<mark>mm Hh</mark>	
mh	Mm hh	<mark>mm hh</mark>	

Sí, habrá individuos blancos. 2/8 = 1/4 = 25% serán blancos

PROBLEMA 4.2.

a. SE PIDE EL GENOTIPO de; padres (JULIA e HUGO), hijo (PABLO) y abuelos (padres de Hugo)

**0.25 por cada dos bien o repuestas parciales de ambas

• Padres Hugo (abuelos): visión normal e hijo varón daltónico. Abuela es portadora

XX^d y abuelo: XY

Hugo (padre): daltónico. Será X^dY

Julia (madre): con un hijo varón daltónico. Debe ser XX^d

• Pablo (hijo): daltónico. Será X^dY

b. SE PIDE <u>PROBABILIDAD</u> de que la hija sea daltónica.

**0.25 si solo indica la probabilidad y 0.25 si lo justifica con el cruce o con explicación razonada

Hugo: X ^d Y x XX ^d Jo	ulia
---	------

^//	,	uı	•

	Χď	Υ
Χ	XXd	XY
\mathbf{X}^{d}	X ^d X ^d	Χ ^d Y

Probabilidad: ½ = 50% de las hijas serán daltónicas.

** Nota: también correcto si se indica la proporción del total de la descendencia:

½ = 25% de TODA la descendencia serán hijas daltónicas.

El 50% de las hijas o el 25% de toda la descendencia serán hijas portadoras.