

Evaluación para Acceso a la Universidad Convocatoria de 2017

Materia: MATEMÁTICAS II

Instrucciones: El estudiante deberá contestar a una de las dos opciones propuestas A o B. Dentro de cada opción el estudiante elegirá cuatro ejercicios entre los cinco propuestos. Los ejercicios deben redactarse con claridad, detalladamente y razonando las respuestas. Se puede utilizar cualquier tipo de calculadora. Cada ejercicio completo puntúa 2,5 puntos. Duración de la prueba: 1 hora y 30 minutos.

PROPUESTA A

1A. Dada la función

$$f(x) = \begin{cases} x^2 + a & \text{si } x \le 2\\ -x^2 + bx - 9 & \text{si } x > 2 \end{cases}$$

- a) Calcula razonadamente los parámetros a y b para que f(x) sea derivable en todo \mathbb{R} . (1,5 puntos)
- b) Enuncia el teorema de Rolle y comprueba si, para los valores hallados en el apartado anterior, la función f(x) verifica las hipótesis del teorema en el intervalo [-2, 6]. (1 punto)
- 2A. Con una chapa metálica de 8×5 metros se desea construir, cortando cuadrados en las esquinas, un cajón sin tapa de volumen máximo. Halla razonadamente las dimensiones de dicho cajón. (2,5 puntos)
- **3A.** a) Discute el siguiente sistema de ecuaciones lineales en función del parámetro $a \in \mathbb{R}$

- b) Resuélvelo razonadamente para el valor a = -1. (1 punto)
- **4A.** Dado el punto P(2,0,-1) y las rectas

$$r \equiv \frac{x-2}{-1} = \frac{y+1}{2} = \frac{z}{0}$$
 y $s \equiv \begin{cases} x-y+2z+4=0\\ x+z+1=0 \end{cases}$

- a) Determina razonadamente la posición relativa de las rectas r y s. (1,5 puntos)
- b) Encuentra razonadamente la ecuación general del plano que pasando por P es paralelo a r y a s.

(1 punto)

- **5A.** a) Los operarios A, B y C producen, respectivamente, el 50 %, el 30 % y el 20 % de las resistencias que se utilizan en un laboratorio de electrónica. Resultan defectuosas el 6 % de las resistencias producidas por A, el 5% de las producidas por B y el 3% de las producidas por C. Se selecciona al azar una resistencia:
 - a1) Calcula razonadamente la probabilidad de que sea defectuosa. (0,75 puntos)
 - a2) Si es defectuosa, calcula razonadamente la probabilidad de que proceda del operario A.

(0.5 puntos)

- b) Las resistencias se empaquetan al azar en cajas de cinco unidades. Calcula razonadamente la probabilidad de:
 - b1) Que en una caja haya exactamente tres resistencias fabricadas por B. (0,75 puntos)
 - b2) Que en una caja haya al menos dos fabricadas por B. (0,5 puntos)

n	k p	0,01	0,05	0,10	0,15	0,20	0,25	0,30	0,33	0,35	0,40	0,45	0,49	0,50
5	0	0,9510	0,7738	0,5905	0,4437	0,3277	0,2373	0,1681	0,1317	0,1160	0,0778	0,0503	0,0345	0,0313
	1	0,0480	$0,\!2036$	$0,\!3281$	$0,\!3915$	$0,\!4096$	0,3955	0,3602	$0,\!3292$	0,3124	$0,\!2592$	0,2059	0,1657	0,1563
	2	0,0010	0,0214	0,0729	0,1382	0,2048	0,2637	0,3087	0,3292	0,3364	0,3456	0,3369	0,3185	0,3125
	3	0,0000	0,0011	0,0081	0,0244	0,0512	0,0879	0,1323	0,1646	0,1811	0,2304	0,2757	$0,\!3060$	0,3125
	4	0,0000	0,0000	0,0005	0,0022	0,0064	0,0146	0,0284	0,0412	0,0488	0,0768	0,1128	0,1470	0,1563
	5	0,0000	0,0000	0,0000	0,0001	0,0003	0,0010	0,0024	0,0041	0,0053	0,0102	0,0185	0,0282	0,0313

Evaluación para Acceso a la Universidad Convocatoria de 2017 Materia: MATEMÁTICAS II

Instrucciones: El estudiante deberá contestar a una de las dos opciones propuestas A o B. Dentro de cada opción el estudiante elegirá **cuatro** ejercicios entre los cinco propuestos. Los ejercicios deben redactarse con claridad, detalladamente y razonando las respuestas. Se puede utilizar cualquier tipo de calculadora. Cada ejercicio completo puntúa 2,5 puntos. Duración de la prueba: 1 hora y 30 minutos.

PROPUESTA B

1B. Calcula razonadamente los siguientes límites:

a)
$$\lim_{x \to -2} \frac{x^3 + 3x^2 - 4}{x^3 + 5x^2 + 8x + 4}$$
 b) $\lim_{x \to 0} \frac{x \ln(x+1)}{2 - 2 \cos x}$ (1,25 puntos por límite)

Nota: In denota logaritmo neperiano.

2B. Dadas las funciones $f(x) = -x^2$ y $g(x) = x^2 - 2x - 4$

- a) Calcula razonadamente el área del recinto cerrado limitado por sus gráficas. (1,5 puntos)
- b) Encuentra razonadamente la ecuación de la recta normal a la gráfica de g(x) en el punto de abscisa x = -3. (1 punto)
- **3B.** Dadas matrices

$$A = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ 1 & 2 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{y} \quad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 3 & 0 \\ -1 & 0 & -1 \end{pmatrix}$$

- a) ¿Tiene inversa la matriz $2I_3 + B$? Razona la respuesta. I_3 es la matriz identidad de orden 3. (1 punto)
- b) Calcula razonadamente la matriz X que verifica que $2X + C = A X \cdot B$. (1,5 puntos)
- **4B.** a) Encuentra razonadamente la ecuación de la recta, en su forma general o implícita, que contiene a los puntos P(0,1,-2) y Q(4,-3,0). (1 punto)
- b) Encuentra razonadamente un punto que equidiste de P y Q y que pertenezca a la recta

$$r \equiv \left\{ egin{array}{ll} x=2+\lambda \ y=-\lambda \ z=-5 \end{array}
ight. \qquad \lambda \in \mathbb{R}. \qquad extbf{(1,5 puntos)}$$

- **5B.** a) En mi casa dispongo de dos estanterías A y B. En A tengo 20 novelas, 10 ensayos y 10 libros de matemáticas y en la B tengo 12 novelas y 8 libros de matemáticas. Elijo una estantería al azar y de ella, también al azar, un libro. Calcula razonadamente la probabilidad de que:
 - a1) El libro elegido sea de matemáticas. (0,75 puntos)
 - a2) Si el libro elegido resultó ser de matemáticas, que fuera de la estantería B. (0,5 puntos)
- b) El tiempo de espera en una parada de autobús se distribuye según una distribución normal de media 15 minutos y desviación típica 5 minutos.
 - b1) Calcula razonadamente la probabilidad de esperar menos de 13 minutos. (0,75 puntos)
- b2) ¿Cuántos minutos de espera son superados por el 33 % de los usuarios? Razona la respuesta. (0,5 puntos)

a	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
$\parallel 0,1$	0,5398	0,5438	0,5478	$0,\!5517$	$0,\!5557$	$0,\!5596$	$0,\!5636$	$0,\!5675$	$0,\!5714$	0,5753
$\parallel 0,2$	0,5793	0,5832	0,5871	0,5910	0,5948	$0,\!5987$	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879