

Engineering Doctorates in Australia

"What does industry think of doctoral graduates and what are we doing about it?"

Robin W King

Australian Council of Engineering Deans

Chair: Engineers Australia Accreditation Board
Chair: Sydney Accord
Emeritus Professor, University of South Australia

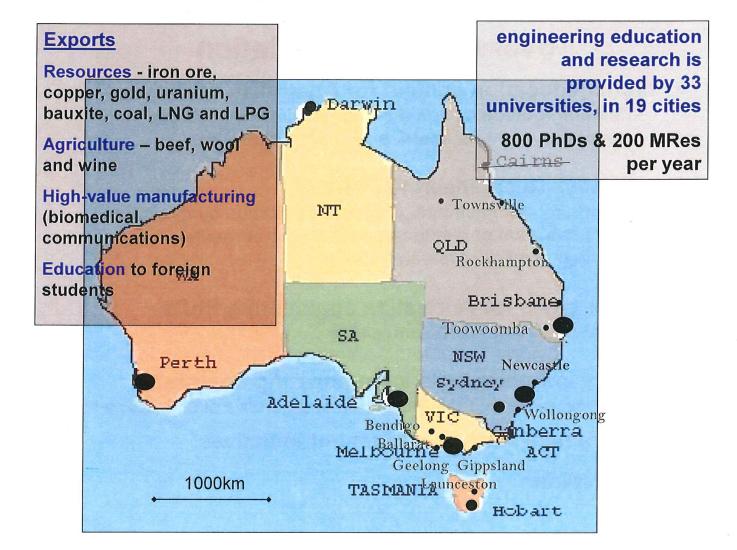
email: robin.king@uts.edu.au

overview of presentation

- higher education context for Australian doctorates
 - learning outcomes and the qualifications framework
 - regulatory context: metrics and institutional value
- pathways to engineering PhDs
 - numbers: commencers, graduations, trends by discipline
 - concentration of research training environments
 - management of research training
- career paths for Australian engineering PhDs
 - graduate destinations and cases
- quality improvements in engineering doctorates
 - Issues, professional doctorates and generic skill development
- government reviews and recent initiatives
- conclusions

Australia: population ~ 23M

- GDP/head ~ US\$41,000 (2010) •rated 2nd (to France) 2010 Quality of Life index (*International Living* magazine)
- economic growth from resource extraction
 bad global per-cap carbon footprint
- very constrained by water



Images © SA Tourism Commission and BHP Ltd.

Higher Education Context for Engineering PhDs

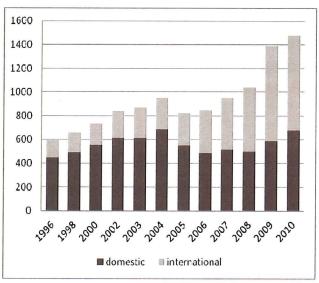
- all 38 public universities offer PhD and Masters by Research
- universities must have defined research capability
- doctorates are at Level 10 of the Australian Qualifications
 Framework (AQF) with deliver learning outcomes as in Table
 - PhDs are assessed by thesis
 - professional doctorates (mostly DBA and EdD) coursework and research thesis on professional practice

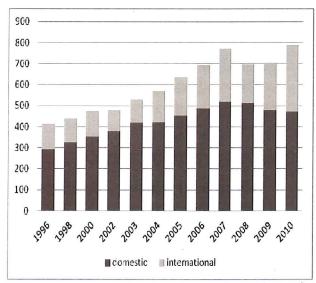
knowledge	substantial; forefront of field; original; research principles and methods
skills	cognitive – critical, systematic expert – technical and creative; design, implement analyse, theorise and communicate communication – explain and present to peers and community
application	independence; initiative and creativity, responsibility, accountability; execution of original research; ongoing capacity to generate new knowledge

aced

- government provides funds for HDR Research Training places and scholarships (HDR = "higher degrees by research")
- universities may have additional outcome specifications
 - the University of South Australia has 7 "research degree graduate qualities" – include all the AQF 10 and specifically reference: collaborative research, ethical & social issues, and international perspectives
- university performance metrics related to HDR research training
 - HDR graduations, research publications and research income are used in government formulae to allocate funded future HDR places, scholarships and research infrastructure
 - universities usually use the same metrics for allocation between disciplines - engineering does relatively well
- measurement of research quality and excellence is a continuing "hot-topic" >> funding concentration
- the new Tertiary Education Qualification Standards Agency (TEQSA) will establish "research standards" during 2012

- HDR funded places account for ~ 70% of domestic enrolments
 - 6,000 commencing enrolments in 2010 for 3,500 funded places
 - engineering wins about 12% of the HDR allocation


for engineering


- most engineering schools will fund HDR places from other sources, including from industry collaborations
- entry pathways (for engineering):

 the qualifying degree must be at a high level of merit (at least second class honours or equivalent)

commencing enrolments and graduations in engineering PhDs

- international growth ~ 50% of enrolments & graduations
- high overall completion rate
 - 800 commencers in 2004 >> 730 graduates over 2006-8 (estimate)
- about 20 25% of enrolments are women (contrasts with 15% for bachelor degrees)

 distribution of PhDs between engineering branches is similar between domestic and international students

Engineering branch		
Electrical & Electronics (including Computer Engineering)		
Process and Resources		
Civil	18	
Mechanical, Manufacturing and Industrial		
Other: geomatic, aerospace, maritime, biomedical, etc.		

- Are we producing sufficient PhD graduates for national needs, including for replacing retiring academic staff?
 - domestic enrolments are not increasing and most international graduates are likely to return home (eventually)

aced

an international comparison

population, 2010	Australia 22,421,000		USA 309,975,000	
engineering qualifications	graduate numbers	domestic graduates per million population	graduate numbers	domestic graduates per million population
bachelors (domestic %)	9,149 (68.2%)	278	78,347 (93.8%)	237
masters (domestic %)	4,635 (28.9%)	60	43,023 (53.9%)	75
doctorates (domestic %)	789 (59.8%)	21	8,995 (45.8%)	13

- Australian produces more engineering PhD's per population than USA; with similar international trends
- Is there similar data for other countries?

the changing environment of university engineering research and research training

- concentration of research into university types:
 - 62.5% of all engineering PhD graduates from 10 "research" uni's
 - 25.6% from 6 former Institutes of Technology
- erosion of the "supervisor apprentice" model of training, to more corporately regulated and accountable forms
- growth of research concentration in "centres" and "institutes" and growth of post-doctoral positions
 - bigger questions need bigger teams and more \$
 - governments can identify and fund "centres of excellence", as in
 - Special Research Centres (funded by the Australian Research Council) for basic research
 - Cooperative Research Centres for industry-linked "pre-competitive applied multidisciplinary research"
- alongside very competitive research grant (ARC) schemes
- HDR places are allocated preferentially to the funded national programs (covering about a third of the students) $a \in ed$

a cooperative research centre: CIEAM

- the Centre Integrated Engineering Asset Management
 - 7 universtiy research partners and 2 government agencies
 - 11 industries (mining, water and energy utilities, transport, defence)
 - focus is on maintenance technologies, maintenance management practice and life-time extension of engineering plant and assets
 - 50 PhD graduates since 2006 in engineering, information systems and management
 - graduates participate in national and international forums

research in engineering education

 growth of research in engineering education with PhD enrolments has led to networked discussions about a nationally networked centre – as well as developing a "new generation" of engineering academics

management of research training

- each provider has explicit regulations for supervision, facilities provision, student progress and thesis submission
- students are supported by workshops on research methods, planning and research writing
 - these should focus on the culture of engineering research, noting
 - engineering is a "design" discipline, so research questions may be on the science of hypothetical future design, rather than "knowledge discovery"
- PhD candidates in engineering are usually encouraged to publish during candidature
- thesis requirements are usually ~100,000 words + appendices
- examination is independent of supervision, and usually includes one or more international examiner; consequently ...
- · verbal defence (viva) is NOT normally part of the process
- Can managed PhD candidature be treated more effectively as a professional development process?

career paths for Australian engineering PhDs

- employment rates for PhD and research Masters
 - 78.6% graduating in 2010 in full-time employment (sample survey)
 - mining and aeronautical all employed (small numbers)
 - electrical/electronics/computing ~ 20% seeking work
 - 80% in large organisations
 - 80% in full-time employment judged their research degree to be at least important for their employment (except for mining)
 - some (median) salary advantage on appointment is apparent, but would not compensate for years of study, compared with BEng contemporaries
 - more data and graduate tracking is highly desirable to answer the question "what does Australian industry think of engineering doctorates"
 - and the answer will depend on who you ask

three examples make a case for research centres

- one of China's most successful engineers, founder of Suntech Power has a PhD in solar photovoltaics from UNSW
 - ARC Centre of Excellence in Advanced Silicon Photovoltaics and Photonics and its predecessors have been world leaders in solar cell research since 1985, has had numerous PhDs and industry outcomes
- the Institute of Photonics and Optical Sciences at the University of Sydney was featured in Nature, as
 - "a premier institute ... with 40 postgraduate students"
 - the Institute's predecessor has spawned many companies, one employing 40 PhDs in physics and engineering and making worldleading optical fibre devices in Sydney
- Cochlear Ltd. is the world's leading manufacturer of implantable hearing devices, and high ranked publically listed company
 - material, manufacturing and signal processing technologies have been developed in a sequence of CRCs going back to 1992. There are 31 enrolled PhD students in the current CRC

quality improvements in engineering doctorates

- some engineering employers "will not employ PhD graduates", because of perceptions that they have
 - narrow focus (on detail and in their area of expertise)
 - poor generic skills, and lack of ability "to get the job done"
- some engineering academics do not consider that Australia operates at world best practice (except in national centres of excellence) because
 - advanced coursework is not normally included
 - 3-year minimum duration for original research is too short
 - research questions are not at the forefront of the discipline
- professional doctorates have been introduced to focus advanced work on engineering <u>practice</u>, eg UniSA
 - very small enrolments, and confined to the defence industry
 - includes advanced coursework (one year equivalent)
 - major thesis (two thirds of assessment) on systematic problem definition, solution formulation and coordination

generic skills for doctoral candidates

- short courses are provided by many universities, but most systematically by the
- e-Grad School (ATN Group of universities, five former Institutes of Technology) - a virtual graduate school, linked into the CRC system
- e-GSA topics for doctoral candidates include
 - research methods and information literacy career planning and positioning; preparation for university teaching
- e-GSA operates "LEAP" (Learning Employment Aptitude Program) with employability-focussed modules on
 - project management; entrepreneurship; leadership and communication; research commercialisation; public policy and global sustainability
- these, together with advanced engineering subjects (eg in summer and winter schools) would strengthen the engineering doctoral experience as professional development
 - who pays for the subjects and the extra enrolment time?

Australian government reviews and initiatives on research training

- review (2008) on Australia's "innovation system" recommended
 - building research concentrations
 - allocating doctoral stipends to institutions that demonstrate excellence on quantitative measures; increasing stipends and funded places to 4 years
 - funding overseas experience in the early careers of academic researchers
- government's research workforce strategy (for 2020) reinforced CRCs for research training, and improvements around:
 - professional needs of graduates
 - establishing and monitoring research standards and benchmarks
- government announced (December 2011) a new Industrial Transformation Research Program to
 - develop 20 research hubs and 50 research training centres, and fund up to 600 industrial PhDs (where will they come from?)

conclusions - the way ahead

- the Australian engineering doctoral system is working reasonably well, and is broadly supported by government policy
 - the system can be improved and must look forward
 - a specific specification for engineering PhDs may be desirable
- generic skills development, advanced coursework and international experience would be highly desirable
 - funding and regulation are inadequate at present
- higher numbers of well-qualified Australian BEng graduates must be attracted into research, and be valued by employers
 - but increases are unlikely in the current economy
 - new incentives are necessary to encourage "the best"
- new models of research training that incorporate professional career development merit trial in selected institutions
- models for research training that include multidisciplinary thinking may be needed to address emerging problems

aced

acknowledgements

- the examples have been taken from universities in which I have worked; there are many other similar and successful cases
- Professor John Beynon, President of ACED, for comments on the paper

Questions?

